论文标题

相互作用追求双线VENVEX优化

Interaction Pursuit Biconvex Optimization

论文作者

Yang, Yuehan, Xia, Siwei, Yang, Hu

论文摘要

多元回归模型被广泛用于生物学和金融等各个领域。在本文中,我们关注的两个主要挑战:(a)何时应该偏爱多元模型,而不是一系列单变量模型; (b)如果允许响应和预测因素的数量大大超过样本量,则如何降低计算成本并提供精确的估计。所提出的方法,即相互作用追求BICONVEX优化(IPBO),探讨了回归关系,允许从不同的多元正常分布中带有带有一般协方差矩阵的预测因子和响应。实际上,内部的相关结构是复杂的,并根据回归函数相互交互。提出的方法通过建立结构化的稀疏性惩罚来解决此问题,以鼓励网络和回归系数之间的共同结构。我们在可解释的条件下证明了理论结果,并提供了一种有效的算法来计算估计器。模拟研究和实际数据示例将所提出的方法与几种现有方法进行了比较,表明IPBO效果很好。

Multivariate regression models are widely used in various fields such as biology and finance. In this paper, we focus on two key challenges: (a) When should we favor a multivariate model over a series of univariate models; (b) If the numbers of responses and predictors are allowed to greatly exceed the sample size, how to reduce the computational cost and provide precise estimation. The proposed method, Interaction Pursuit Biconvex Optimization (IPBO), explores the regression relationship allowing the predictors and responses derived from different multivariate normal distributions with general covariance matrices. In practice, the correlation structures within are complex and interact on each other based on the regression function. The proposed method solves this problem by building a structured sparsity penalty to encourages the shared structure between the network and the regression coefficients. We prove theoretical results under interpretable conditions, and provide an efficient algorithm to compute the estimator. Simulation studies and real data examples compare the proposed method with several existing methods, indicating that IPBO works well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源