论文标题

深线艺术视频着色和一些参考

Deep Line Art Video Colorization with a Few References

论文作者

Shi, Min, Zhang, Jia-Qi, Chen, Shu-Yu, Gao, Lin, Lai, Yu-Kun, Zhang, Fang-Lue

论文摘要

基于参考图像的颜色的着色线艺术图像是动画制作的重要阶段,这是耗时且乏味的。在本文中,我们提出了一个深层体系结构,以与给定参考图像相同的颜色样式自动彩色艺术视频。我们的框架由颜色变换网络和时间约束网络组成。颜色变换网络采用目标线艺术图像以及一个或多个参考图像作为输入的线条艺术和颜色图像,并生成相应的目标颜色图像。为了应对目标线艺术图像和参考颜色图像之间的较大差异,我们的体系结构利用非本地相似性匹配来确定目标图像和参考图像之间的区域对应关系,这些区域用于将本地颜色信息从参考转换为目标。为了确保全局颜色样式的一致性,我们将自适应实例归一化(ADAIN)与从样式嵌入向量获得的转换参数相结合,该样式嵌入向量描述了由嵌入者提取的参考文献的全局颜色样式。时间约束网络按时间顺序将参考图像和目标图像一起使用,并通过3D卷积学习时空特征,以确保目标图像和参考图像的时间一致性。我们的模型可以通过在处理新样式的动画时仅用少量样本来微调参数来实现更好的着色结果。为了评估我们的方法,我们构建了一条线条着色数据集。实验表明,与最先进的方法和其他基线相比,我们的方法可以实现最佳的艺术视频色彩。

Coloring line art images based on the colors of reference images is an important stage in animation production, which is time-consuming and tedious. In this paper, we propose a deep architecture to automatically color line art videos with the same color style as the given reference images. Our framework consists of a color transform network and a temporal constraint network. The color transform network takes the target line art images as well as the line art and color images of one or more reference images as input, and generates corresponding target color images. To cope with larger differences between the target line art image and reference color images, our architecture utilizes non-local similarity matching to determine the region correspondences between the target image and the reference images, which are used to transform the local color information from the references to the target. To ensure global color style consistency, we further incorporate Adaptive Instance Normalization (AdaIN) with the transformation parameters obtained from a style embedding vector that describes the global color style of the references, extracted by an embedder. The temporal constraint network takes the reference images and the target image together in chronological order, and learns the spatiotemporal features through 3D convolution to ensure the temporal consistency of the target image and the reference image. Our model can achieve even better coloring results by fine-tuning the parameters with only a small amount of samples when dealing with an animation of a new style. To evaluate our method, we build a line art coloring dataset. Experiments show that our method achieves the best performance on line art video coloring compared to the state-of-the-art methods and other baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源