论文标题

通过巨大的痛苦(身体上的智能网络)朝着更安全的自我驾驶()

Towards Safer Self-Driving Through Great PAIN (Physically Adversarial Intelligent Networks)

论文作者

Gupta, Piyush, Coleman, Demetris, Siegel, Joshua E.

论文摘要

自动化车辆的神经网络由于数据可用性有限而遭受过度合适,可推广性差和未经训练的边缘案例的影响。研究人员合成了随机边缘案例的场景,以协助训练过程,尽管模拟引入了过度拟合潜在规则和功能的潜力。自动化最差的场景产生可以产生信息丰富的数据以改善自我驾驶。为此,我们引入了一个“身体上的智能网络”(痛),其中自动驾驶车辆在Carla模拟环境中积极相互作用。我们使用Dueling Double Deep Q网络(DDDQN)培训两个代理商,一个主角和一个对手,并具有优先的经验重播。耦合的网络交替寻求毛利赛,并避免碰撞,以使“防御性”回避算法增加了在非托管操作条件下的平均时间到失败和距离。训练有素的主角对环境不确定性更具弹性,而不太容易发生碰撞的碰撞,而不是没有对手的训练的代理人。

Automated vehicles' neural networks suffer from overfit, poor generalizability, and untrained edge cases due to limited data availability. Researchers synthesize randomized edge-case scenarios to assist in the training process, though simulation introduces potential for overfit to latent rules and features. Automating worst-case scenario generation could yield informative data for improving self driving. To this end, we introduce a "Physically Adversarial Intelligent Network" (PAIN), wherein self-driving vehicles interact aggressively in the CARLA simulation environment. We train two agents, a protagonist and an adversary, using dueling double deep Q networks (DDDQNs) with prioritized experience replay. The coupled networks alternately seek-to-collide and to avoid collisions such that the "defensive" avoidance algorithm increases the mean-time-to-failure and distance traveled under non-hostile operating conditions. The trained protagonist becomes more resilient to environmental uncertainty and less prone to corner case failures resulting in collisions than the agent trained without an adversary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源