论文标题

微生物神经启动器:在MEMS中整合感应和储层计算

Microfabricated Neuroaccelerometer: Integrating Sensing and Reservoir Computing in MEMS

论文作者

Barazani, Bruno, Dion, Guillaume, Morissette, Jean-François, Beaudoin, Louis, Sylvestre, Julien

论文摘要

这项研究介绍了具有内在处理能力的微加速度计的设计,制造和测试,该计算机在同一MEMS中集成了传感和计算的功能。该设备由惯性质量通过静电量组成,该质量通过8μm的间隙与振荡光束耦合。惯性质量的运动调节了AC静电场,该静电场以其非线性状态驱动梁。这种非线性性用于使用带有延迟反馈的储层计算来处理惯性质量提供的加速度信息。使用常规MEMS工艺将该设备在硅底物底物上进行微生物。动态表征表现出良好的加速度计功能,其惯性质量灵敏度的100 mV/g为250至1300 Hz,固有频率为1.7 kHz。为了测试设备计算功能,实现了两个不同的机器学习基准,并将输入作为加速度供应到设备。神经形态的MEMS加速度计能够准确模拟非线性自动回归运动平均模型,并计算随机位流的均衡性。这些结果是在具有非平凡转移函数的测试系统中获得的,显示出非常适合预期应用的鲁棒性。

This study presents the design, fabrication, and test of a micro accelerometer with intrinsic processing capabilities, that integrates the functions of sensing and computing in the same MEMS. The device consists of an inertial mass electrostatically coupled to an oscillating beam through a gap of 8 μm. The motion of the inertial mass modulates an AC electrostatic field that drives the beam in its non-linear regime. This non-linearity is used to implement machine learning in the mechanical domain, using reservoir computing with delayed feedback to process the acceleration information provided by the inertial mass. The device is microfabricated on a silicon-on-insulator substrate using conventional MEMS processes. Dynamic characterization showed good accelerometer functionalities, with an inertial mass sensitivity on the order of 100 mV/g from 250 to 1300 Hz and a natural frequency of 1.7 kHz. In order to test the device computing capabilities, two different machine learning benchmarks were implemented, with the inputs fed to the device as accelerations. The neuromorphic MEMS accelerometer was able to accurately emulate non-linear autoregressive moving average models and compute the parity of random bit streams. These results were obtained in a test system with a non-trivial transfer function, showing a robustness that is well-suited to anticipated applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源