论文标题

多机器人协调的风险感知的suppodular Optimation

Risk-Aware Submodular Optimization for Multi-Robot Coordination

论文作者

Zhou, Lifeng, Tokekar, Pratap

论文摘要

我们研究在不确定性下做出组合决策时纳入风险的问题。我们为使用条件 - 价值 - 危险风险(CVAR)选择集合制定了一个离散的suppodular最大化问题,这是财务分析中常用的风险度量标准。尽管CVAR最近已用于优化机器人技术中的线性成本函数,但我们迈出了将其扩展到离散的下义优化并提供多个积极结果的第一步。具体而言,我们提出了顺序贪婪算法,该算法在矩阵约束下找到了CVAR成本函数的最大值的近似保证。近似保证表明,由我们的算法产生的解决方案在最佳和添加术语的恒定因子内,取决于最佳。我们的分析使用了子模具集函数的曲率,并证明该算法在多项式时间内运行。这制定了许多在机器人技术中出现的组合优化问题。我们使用两个这样的问题,即在不确定性的情况下进行的车辆分配,并选择传感器的选择,并在环境监测中进行失败,作为案例研究以证明我们配方的功效。特别是,对于按需学习的研究,我们提出了一种在线触发作业算法,该算法触发新的任务仅可能导致减少需求位置的等待时间。我们通过模拟验证了顺序贪婪算法和在线触发分配算法的性能。

We study the problem of incorporating risk while making combinatorial decisions under uncertainty. We formulate a discrete submodular maximization problem for selecting a set using Conditional-Value-at-Risk (CVaR), a risk metric commonly used in financial analysis. While CVaR has recently been used in optimization of linear cost functions in robotics, we take the first step towards extending this to discrete submodular optimization and provide several positive results. Specifically, we propose the Sequential Greedy Algorithm that provides an approximation guarantee on finding the maxima of the CVaR cost function under a matroidal constraint. The approximation guarantee shows that the solution produced by our algorithm is within a constant factor of the optimal and an additive term that depends on the optimal. Our analysis uses the curvature of the submodular set function, and proves that the algorithm runs in polynomial time. This formulates a number of combinatorial optimization problems that appear in robotics. We use two such problems, vehicle assignment under uncertainty for mobility-on-demand and sensor selection with failures for environmental monitoring, as case studies to demonstrate the efficacy of our formulation. In particular, for the mobility-on-demand study, we propose an online triggering assignment algorithm that triggers a new assignment only can potentially lead to reducing the waiting time at demand locations. We verify the performance of the Sequential Greedy Algorithm and the online triggering assignment algorithm through simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源