论文标题

用于催化剂操作的化学动力学:催化反应期间气体和温度分布的3D建模

Chemical Kinetics for Operando Electron Microscopy of Catalysts: 3D Modeling of Gas and Temperature Distributions During Catalytic Reactions

论文作者

Vincent, Joshua L., Vance, Jarod W., Langdon, Jayse T., Miller, Benjamin K., Crozier, Peter A.

论文摘要

$ \ textit {intu} $环境传输电子显微镜(ETEM)是一种强大的工具,用于观察在反应条件下在异质催化剂中进行结构修饰。但是,为了加强催化剂结构与功能之间的联系,必须执行$ \ textIt {operando} $测量,其中反应动力学和催化剂结构同时确定。为了确定用于气相催化的化学动力学,有必要开发一个可靠的化学工程模型来描述ETEM细胞内的催化以及热量和质量传输过程。在这里,我们建立了一个有限的元素模型,以确定开放式操作ETEM实验中催化过程中的气体和温度曲线。该模型适用于$ SIO_2 $ supported RU催化剂执行CO氧化。在模拟组合物与在25-350°C的温度范围内实验测量的组合物之间达到了良好的一致性。通常,对于较低的转换,模拟表明温度和气体在催化剂所在的TEM持有器的热区域内相对均匀。气体和温度的均匀性表明ETEM反应器系统的行为近似于连续搅拌的储罐反应器的行为。大量的气相均匀性还允许使用电子损失光谱法估计细胞中反应物的催化转化至10%以内。此外,研究结果表明,对于低于30%的反应物转换,可以可靠地评估在TEM网格上成像的催化剂纳米颗粒的稳态反应速率。

$\textit{In situ}$ environmental transmission electron microscopy (ETEM) is a powerful tool for observing structural modifications taking place in heterogeneous catalysts under reaction conditions. However, to strengthen the link between catalyst structure and functionality, an $\textit{operando}$ measurement must be performed in which reaction kinetics and catalyst structure are simultaneously determined. To determine chemical kinetics for gas-phase catalysis, it is necessary to develop a reliable chemical engineering model to describe catalysis as well as heat and mass transport processes within the ETEM cell. Here, we establish a finite element model to determine the gas and temperature profiles during catalysis in an open-cell operando ETEM experiment. The model is applied to a $SiO_2$-supported Ru catalyst performing CO oxidation. Good agreement is achieved between simulated compositions and those measured experimentally across a temperature range of 25 - 350 °C. In general, for lower conversions, the simulations show that the temperature and gas are relatively homogeneous within the hot zone of the TEM holder where the catalyst is located. The uniformity of gas and temperature indicates that the ETEM reactor system behavior approximates that of a continuously stirred tank reactor. The large degree of gas-phase uniformity also allows one to estimate the catalytic conversion of reactants in the cell to within 10 percent using electron energy-loss spectroscopy. Moreover, the findings indicate that for reactant conversions below 30 percent, one can reliably evaluate the steady-state reaction rate of catalyst nanoparticles that are imaged on the TEM grid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源