论文标题

学习语义细分的动态路由

Learning Dynamic Routing for Semantic Segmentation

论文作者

Li, Yanwei, Song, Lin, Chen, Yukang, Li, Zeming, Zhang, Xiangyu, Wang, Xingang, Sun, Jian

论文摘要

最近,已经应用了许多手工制作和搜索的网络进行语义细分。但是,以前的作品打算处理预定义静态体系结构(例如FCN,U-NET和DEEPLAB系列)中具有各种规模的输入。本文研究了一种概念上的新方法,以减轻语义表示的尺度差异,名为动态路由。所提出的框架生成数据依赖性路由,适应每个图像的比例分布。为此,提出了一个称为软性条件门的可区分门控函数,以选择刻度转换路径。此外,可以通过对门控函数的预算限制来进一步降低计算成本。我们进一步放松了网络级别的路由空间,以支持每个向前的多路传播和跳过连接,从而带来了可观的网络容量。为了证明动态属性的优势,我们将其与几个静态体系结构进行了比较,这些静态体系结构可以在路由空间中建模为特殊情况。在CityScapes和Pascal VOC 2012上进行了广泛的实验,以说明动态框架的有效性。代码可在https://github.com/yanwei-li/dynamicrouting上找到。

Recently, numerous handcrafted and searched networks have been applied for semantic segmentation. However, previous works intend to handle inputs with various scales in pre-defined static architectures, such as FCN, U-Net, and DeepLab series. This paper studies a conceptually new method to alleviate the scale variance in semantic representation, named dynamic routing. The proposed framework generates data-dependent routes, adapting to the scale distribution of each image. To this end, a differentiable gating function, called soft conditional gate, is proposed to select scale transform paths on the fly. In addition, the computational cost can be further reduced in an end-to-end manner by giving budget constraints to the gating function. We further relax the network level routing space to support multi-path propagations and skip-connections in each forward, bringing substantial network capacity. To demonstrate the superiority of the dynamic property, we compare with several static architectures, which can be modeled as special cases in the routing space. Extensive experiments are conducted on Cityscapes and PASCAL VOC 2012 to illustrate the effectiveness of the dynamic framework. Code is available at https://github.com/yanwei-li/DynamicRouting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源