论文标题

BUSTIME:哪个是我的公共汽车到达时间的正确预测模型?

BusTime: Which is the Right Prediction Model for My Bus Arrival Time?

论文作者

Liu, Dairui, Sun, Jingxiang, Wang, Shen

论文摘要

随着大数据技术的兴起,近年来,许多智能运输应用程序已经迅速开发,包括公共汽车到达时间预测。这种类型的应用程序可帮助乘客更有效地计划旅行,而不会浪费在公共汽车站的等待时间。许多研究着重于提高各种机器学习和统计模型的预测准确性,而工作却少得多,证明了它们在现实的城市环境中被部署和使用的适用性。本文试图通过提出一个通用和实用的评估框架来填补这一空白,以分析各种广泛使用的预测模型(即使用长期短期记忆的延迟,k-nearest-neart-neem-neighbour,内核回归,附加模型和复发性神经网络)用于公共汽车到达时间。特别是,该框架包含一种原始的总线GPS数据预处理方法,该方法需要更少的输入数据点,同时仍然保持令人满意的预测结果。这种预处理方法使各种模型只能使用基于KD-Tree的最近点搜索方法来预测总线停止的到达时间。基于此框架,使用来自爱尔兰都柏林市的不同规模的RAW BUS GPS数据集,我们还通过分析培训和预测常用预测模型的培训和预测阶段的实际优势和劣势,为城市管理人员提供初步结果。

With the rise of big data technologies, many smart transportation applications have been rapidly developed in recent years including bus arrival time predictions. This type of applications help passengers to plan trips more efficiently without wasting unpredictable amount of waiting time at bus stops. Many studies focus on improving the prediction accuracy of various machine learning and statistical models, while much less work demonstrate their applicability of being deployed and used in realistic urban settings. This paper tries to fill this gap by proposing a general and practical evaluation framework for analysing various widely used prediction models (i.e. delay, k-nearest-neighbour, kernel regression, additive model, and recurrent neural network using long short term memory) for bus arrival time. In particular, this framework contains a raw bus GPS data pre-processing method that needs much less number of input data points while still maintain satisfactory prediction results. This pre-processing method enables various models to predict arrival time at bus stops only, by using a KD-tree based nearest point search method. Based on this framework, using raw bus GPS dataset in different scales from the city of Dublin, Ireland, we also present preliminary results for city managers by analysing the practical strengths and weaknesses in both training and predicting stages of commonly used prediction models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源