论文标题
具有关键电位的2D波方程的分散估计值
Dispersive estimates for 2D-wave equations with critical potentials
论文作者
论文摘要
我们研究具有关键限制电磁电位的2D波方程。由于模型的缩放不变性和电势的奇异性,因此这个问题非常关键,而电势不可局部。特别是,磁性现象允许考虑以与反方势相同的方式奇异的电势。我们证明了纯粹的磁性案例中的急剧时间估计,并且对完整模型的Strichartz估计涉及临界电磁场。
We study the 2D-wave equation with a scaling-critical electromagnetic potential. This problem is doubly critical, because of the scaling invariance of the model and the singularities of the potentials, which are not locally integrable. In particular, the diamagnetic phenomenon allows to consider negative electric potential which can be singular in the same fashion as the inverse-square potential. We prove sharp time-decay estimates in the purely magnetic case, and Strichartz estimates for the complete model, involving a critical electromagnetic field.