论文标题

大型系统发育树上一般高斯模型的有效贝叶斯推断

Efficient Bayesian Inference of General Gaussian Models on Large Phylogenetic Trees

论文作者

Bastide, Paul, Ho, Lam Si Tung, Baele, Guy, Lemey, Philippe, Suchard, Marc A

论文摘要

系统发育比较方法通过对一组非独立生物体之间的共享进化历史进行了正确的建模,该方法是通过在可能未知史的分支上建模样品特征来建模样品特征。为了结合这种不确定性,我们在利用汉密尔顿蒙特卡洛(HMC)的一般高斯性状进化模型下提出了可扩展的贝叶斯推理框架。 HMC可以有效地对约束模型参数进行有效采样,并利用树结构的快速可能性和梯度计算,从而在观测值的数量中产生算法的复杂性线性。这种方法涵盖了广泛的随机过程,包括一般的Ornstein-Uhlenbeck(OU)过程,并可能缺少数据和测量误差。我们将所有这些模型的生物学相关子集的推理工具实施到野兽系统发育软件包中,并通过边际似然估计来开发模型比较。我们采用我们的方法来研究Musteloidea超级法(包括黄鼠狼和盟友)的形态演变以及HIV毒力的遗传力。第二个问题提供了一种新的进化遗传力,通过靶向模拟研究证明了其效用。

Phylogenetic comparative methods correct for shared evolutionary history among a set of non-independent organisms by modeling sample traits as arising from a diffusion process along on the branches of a possibly unknown history. To incorporate such uncertainty, we present a scalable Bayesian inference framework under a general Gaussian trait evolution model that exploits Hamiltonian Monte Carlo (HMC). HMC enables efficient sampling of the constrained model parameters and takes advantage of the tree structure for fast likelihood and gradient computations, yielding algorithmic complexity linear in the number of observations. This approach encompasses a wide family of stochastic processes, including the general Ornstein-Uhlenbeck (OU) process, with possible missing data and measurement errors. We implement inference tools for a biologically relevant subset of all these models into the BEAST phylogenetic software package and develop model comparison through marginal likelihood estimation. We apply our approach to study the morphological evolution in the superfamilly of Musteloidea (including weasels and allies) as well as the heritability of HIV virulence. This second problem furnishes a new measure of evolutionary heritability that demonstrates its utility through a targeted simulation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源