论文标题
使用数字地图进行对象验证的扩展存在概率
Extended Existence Probability Using Digital Maps for Object Verification
论文作者
论文摘要
自动化车辆的主要任务是准确,强大的环境感知。尤其是,在任何情况下,无错误的检测和建模对于安全驾驶非常重要。为此,通常使用基于原始传感器测量的对象检测的多目标跟踪算法。但是,由于在复杂,任意的情况下,不同的交通参与者密度高密度,因此可以发生错误的对象假设。因此,提出的方法引入了概率模型,以验证跟踪对象的存在。因此,引入了一个对象验证模块,其中评估了多个数字地图元素对轨道存在的影响。最后,概率模型融合了各种曲目的各种影响并估计存在的概率。此外,按照指示图形模型实施了贝叶斯网,以突出该作品的扩展性。提出的方法减少了误报的数量,同时保留了真实的阳性。现实世界数据用于评估和强调提出方法的好处,尤其是在城市场景中。
A main task for automated vehicles is an accurate and robust environment perception. Especially, an error-free detection and modeling of other traffic participants is of great importance to drive safely in any situation. For this purpose, multi-object tracking algorithms, based on object detections from raw sensor measurements, are commonly used. However, false object hypotheses can occur due to a high density of different traffic participants in complex, arbitrary scenarios. For this reason, the presented approach introduces a probabilistic model to verify the existence of a tracked object. Therefore, an object verification module is introduced, where the influences of multiple digital map elements on a track's existence are evaluated. Finally, a probabilistic model fuses the various influences and estimates an extended existence probability for every track. In addition, a Bayes Net is implemented as directed graphical model to highlight this work's expandability. The presented approach, reduces the number of false positives, while retaining true positives. Real world data is used to evaluate and to highlight the benefits of the presented approach, especially in urban scenarios.