论文标题

优化足球比赛策略

Optimising Game Tactics for Football

论文作者

Beal, Ryan, Chalkiadakis, Georgios, Norman, Timothy J., Ramchurn, Sarvapali D.

论文摘要

在本文中,我们提出了一种新颖的方法,以优化足球(足球)战术和战略决策。我们将足球游戏建模为多阶段游戏,该游戏是由贝叶斯游戏组成的,可以对赛前决策和随机游戏进行建模,以建模匹配状态的状态过渡和决策。使用此公式,我们提出了一种预测游戏结果的可能性和团队行动的回报的方法。在此基础上,我们开发了算法,以优化具有不同目标的团队组成和游戏中的策略。对我们在760场比赛中现实世界数据集的方法的经验评估表明,通过使用贝叶斯和随机游戏的优化策略,我们可以分别增加赢得胜利的机会,分别达到16.1 \%\%和3.4 \%。

In this paper we present a novel approach to optimise tactical and strategic decision making in football (soccer). We model the game of football as a multi-stage game which is made up from a Bayesian game to model the pre-match decisions and a stochastic game to model the in-match state transitions and decisions. Using this formulation, we propose a method to predict the probability of game outcomes and the payoffs of team actions. Building upon this, we develop algorithms to optimise team formation and in-game tactics with different objectives. Empirical evaluation of our approach on real-world datasets from 760 matches shows that by using optimised tactics from our Bayesian and stochastic games, we can increase a team chances of winning by up to 16.1\% and 3.4\% respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源