论文标题

基于空间金字塔的语义分割的图形推理

Spatial Pyramid Based Graph Reasoning for Semantic Segmentation

论文作者

Li, Xia, Yang, Yibo, Zhao, Qijie, Shen, Tiancheng, Lin, Zhouchen, Liu, Hong

论文摘要

卷积操作遭受了有限的接收归档,而全球建模是密集的预测任务(例如语义分割)的基础。在本文中,我们将图形卷积应用于语义分割任务,并提出了改进的Laplacian。图推理直接在组织为空间金字塔的原始特征空间中执行。与现有方法不同,我们的laplacian依赖数据依赖性,我们引入了一个注意对角线矩阵以学习更好的距离度量。它摆脱了投影和重新投影过程,这使我们提出的方法成为轻巧的模块,可以轻松地插入当前的计算机视觉体系结构中。更重要的是,在特征空间中直接执行图形推理可以保留空间关系,并使空间金字塔成为可能从不同尺度探索多个远程上下文模式。关于城市景观,可可件,帕斯卡环境和帕斯卡VOC的实验证明了我们提出的方法对语义分割的有效性。我们在计算和内存开销方面具有可比的性能。

The convolution operation suffers from a limited receptive filed, while global modeling is fundamental to dense prediction tasks, such as semantic segmentation. In this paper, we apply graph convolution into the semantic segmentation task and propose an improved Laplacian. The graph reasoning is directly performed in the original feature space organized as a spatial pyramid. Different from existing methods, our Laplacian is data-dependent and we introduce an attention diagonal matrix to learn a better distance metric. It gets rid of projecting and re-projecting processes, which makes our proposed method a light-weight module that can be easily plugged into current computer vision architectures. More importantly, performing graph reasoning directly in the feature space retains spatial relationships and makes spatial pyramid possible to explore multiple long-range contextual patterns from different scales. Experiments on Cityscapes, COCO Stuff, PASCAL Context and PASCAL VOC demonstrate the effectiveness of our proposed methods on semantic segmentation. We achieve comparable performance with advantages in computational and memory overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源