论文标题
$ f(t)$重力可以解决$ h_0 $张力吗?
Can $f(T)$ gravity resolve the $H_0$ tension?
论文作者
论文摘要
由于本地探针和全球探针之间的$ H_0 $测量值的差异,我们调查了触发性重力是否可以成为描述当今观察结果的更好模型,还是至少减轻$ H_0 $张力。具体而言,在这项工作中,我们根据Planck-2018 CMB数据发布来研究并对三个流行的$ F(T)$模型放置约束。我们发现$ f(t)$ power-law模型可以减轻$ h_0 $张力从$4.4σ$降至$1.9σ$级别,而两个指数的$ f(t)$模型无法解决这种不一致。此外,我们首次获得了对相对论物种$ n_ {eff} $的有效数量的限制,以及$ f(t)$ gravity中的中微子质量$σm_ν$的总和。我们发现获得的约束比$λ$ CDM更宽。但是,将大量中微子引入宇宙学模型可以减轻幂律模型的$ H_0 $张力。最后,我们发现可行的$ f(t)$理论是否可以减轻$ h_0 $张力取决于失真因子$ y(z,\,b)$的数学结构。这些结果可以为理论家提供$ f(t)$函数的更物理动机表达的线索。
Motivated by the discrepancy in measurements of $H_0$ between local and global probes, we investigate whether teleparallel gravities could be a better model to describe the present days observations or at least to alleviate the $H_0$ tension. Specifically, in this work we study and place constraints on three popular $f(T)$ models in light of the Planck-2018 CMB data release. We find that the $f(T)$ power-law model can alleviate the $H_0$ tension from $4.4σ$ to $1.9σ$ level, while the $f(T)$ model of two exponential fail to resolve this inconsistency. Moreover, for the first time, we obtain constraints on the effective number of relativistic species $N_{eff}$ and on the sum of the neutrino masses $Σm_ν$ in $f(T)$ gravity. We find that the constraints obtained are looser than in $Λ$CDM. However, the introduction of massive neutrinos into the cosmological model alleviate the $H_0$ tension for the power-law model. Finally, we find that whether a viable $f(T)$ theory can mitigate the $H_0$ tension depends on the mathematical structure of the distortion factor $y(z,\,b)$. These results could provide a clue for theoreticians to write a more physical-motivated expression of $f(T)$ function.