论文标题

兴奋流系统中的新兴动态

Emergent dynamics in excitable flow systems

论文作者

Ruiz-Garcia, Miguel, Katifori, Eleni

论文摘要

流网络可以描述许多天然和人造系统。我们提出了一个允许累积体积的流系统的模型,包括当前和压力差之间非线性关系的导管,并且可以应用于任意拓扑网络。该模型显示复杂的动力学,包括在没有输入和输出中任何动力学的情况下进行自我维持的振荡。在这项工作中,我们通过分析显示了1D情况下自我维持的振荡的起源。我们从数值上研究了在不同条件下任意拓扑系统的行为:当网络具有线性电导的导管区域时,我们讨论了它们的兴奋性,不同边界条件的效果和波浪传播。

Flow networks can describe many natural and artificial systems. We present a model for a flow system that allows for volume accumulation, includes conduits with a non-linear relation between current and pressure difference, and can be applied to networks of arbitrary topology. The model displays complex dynamics, including self-sustained oscillations in the absence of any dynamics in the inputs and outputs. In this work we analytically show the origin of self-sustained oscillations for the 1D case. We numerically study the behavior of systems of arbitrary topology under different conditions: we discuss their excitability, the effect of different boundary conditions and wave propagation when the network has regions of conduits with linear conductance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源