论文标题

自动化车辆相互作用期间人行横道行为的分析和预测

Analysis and Prediction of Pedestrian Crosswalk Behavior during Automated Vehicle Interactions

论文作者

Jayaraman, Suresh Kumaar, Tilbury, Dawn M., Yang, X. Jessie, Pradhan, Anuj K., Robert Jr, Lionel P.

论文摘要

对于围绕行人的安全导航,自动车辆(AV)需要通过长期预测行人轨迹来计划其运动。当前的人行横道围绕AV运动计划的方法仅在短时间内预测(1-2 s),并基于人行道与人类驱动车辆(HDVS)的数据。在本文中,我们开发了一个混合系统模型,该模型使用行人差距接受行为和恒定速度动力学,以实现与AVS相互作用时长期行人轨迹预测的持续速度动力学。结果证明了该模型在人行横道上长期(> 5 s)行人轨迹预测的适用性。此外,我们将沉浸式虚拟环境(与AVS相互作用时)在现实世界中(与HDV相互作用的已发表研究的结果)中的行人交叉行为进行了比较,并发现了两者之间的相似之处。这些相似之处证明了从沉浸式虚拟环境(IVE)开发的AV相互作用的混合模型的适用性,用于现实世界中的AVS和HDVS。

For safe navigation around pedestrians, automated vehicles (AVs) need to plan their motion by accurately predicting pedestrians trajectories over long time horizons. Current approaches to AV motion planning around crosswalks predict only for short time horizons (1-2 s) and are based on data from pedestrian interactions with human-driven vehicles (HDVs). In this paper, we develop a hybrid systems model that uses pedestrians gap acceptance behavior and constant velocity dynamics for long-term pedestrian trajectory prediction when interacting with AVs. Results demonstrate the applicability of the model for long-term (> 5 s) pedestrian trajectory prediction at crosswalks. Further we compared measures of pedestrian crossing behaviors in the immersive virtual environment (when interacting with AVs) to that in the real world (results of published studies of pedestrians interacting with HDVs), and found similarities between the two. These similarities demonstrate the applicability of the hybrid model of AV interactions developed from an immersive virtual environment (IVE) for real-world scenarios for both AVs and HDVs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源