论文标题
纳米级铝合金机械性能的数值研究
Numerical Investigation of Mechanical Properties of Aluminum-Copper Alloys at Nanoscale
论文作者
论文摘要
纳米引导是一种强大的工具,能够在纳米级提供材料弹性和塑料反应的基本见解。 Nanoscale的合金特别有趣,因为原子研究揭示的局部异质性和变形机制提供了一种更好的方法来理解硬化机制以构建更强的材料。在这项工作中,使用原子模拟研究了Al-Cu合金中的纳米凹陷,以研究负载方向的效果,通过脱位驱动的机制将Cu的百分比合成。此外,已经开发出一种低保真有限元(Fe)模型用于纳米引导模拟,其中使用了原子模拟中使用纳米级材料属性。从FE和MD模拟中计算出材料特性,例如硬度和减少模量,然后进行比较。考虑到这两种数值方法之间的基本差异,从本研究获得的Fe结果公平地符合MD模拟的FE结果。这铺平了一种方法,可以通过使用不需要高保真结果的Fe来查找具有减少模拟时间和成本的合金的材料特性。结果已作为载荷分析分析,位错密度,位错环成核和传播,von-Mins-Mins-Mins-Mins应力分布和表面烙印。可以进一步扩展本文将原子数据纳入FE模拟中采用的技术,以寻找复杂合金材料的其他机械和断裂特性。
Nanoindentation is a powerful tool capable of providing fundamental insights of material elastic and plastic response at the nanoscale. Alloys at nanoscale are particularly interesting as the local heterogeneity and deformation mechanism revealed by atomistic study offers a better way to understand hardening mechanism to build a stronger material. In this work, nanoindentation in Al-Cu alloys are studied using atomistic simulations to investigate the effects of loading direction, alloying percentages of Cu via dislocation-driven mechanisms. Also, a low-fidelity finite element (FE) model has been developed for nanoindentation simulations where nanoscale materials properties are used from atomistic simulations. Material properties, such as hardness and reduced modulus, are computed from both the FE and MD simulations and then compared. Considering the fundamental difference between these two numerical approaches, the FE results obtained from the present study conform fairly with those from MD simulations. This paves a way into finding material properties of alloys with reduced simulation time and cost by using FE where high-fidelity results are not required. The results have been presented as load-displacement analysis, dislocation density, dislocation loops nucleation and propagation, von-Mises stress distribution and surface imprints. The techniques adopted in this paper to incorporate atomistic data into FE simulations can be further extended for finding other mechanical and fracture properties for complex alloy materials.