论文标题

通过输出空间量化的多目标回归

Multi-target regression via output space quantization

论文作者

Spyromitros-Xioufis, Eleftherios, Sechidis, Konstantinos, Vlahavas, Ioannis

论文摘要

多目标回归与使用共享的一组预测变量对多个连续目标变量的预测有关。多目标回归中的两个主要挑战是:(a)建模目标依赖性和(b)对大输出空间的可扩展性。在本文中,提出了一种新的多目标回归方法,该方法试图通过一种新的问题转化方法共同解决这些挑战。所提出的称为MRQ的方法基于量化输出空间的想法,以将多个连续目标转换为一个或多个离散的目标。在变换后的输出空间上学习自然可以对目标依赖性进行建模,同时可以灵活地参数化量化策略,以控制预测准确性和计算效率之间的权衡。大量基准数据集的实验表明,在准确性方面,MRQ既具有高度扩展性,又具有最先进的竞争力。特别是,MRQ的合奏版本获得了最佳的总体精度,而比亚军方法的数量级快。

Multi-target regression is concerned with the prediction of multiple continuous target variables using a shared set of predictors. Two key challenges in multi-target regression are: (a) modelling target dependencies and (b) scalability to large output spaces. In this paper, a new multi-target regression method is proposed that tries to jointly address these challenges via a novel problem transformation approach. The proposed method, called MRQ, is based on the idea of quantizing the output space in order to transform the multiple continuous targets into one or more discrete ones. Learning on the transformed output space naturally enables modeling of target dependencies while the quantization strategy can be flexibly parameterized to control the trade-off between prediction accuracy and computational efficiency. Experiments on a large collection of benchmark datasets show that MRQ is both highly scalable and also competitive with the state-of-the-art in terms of accuracy. In particular, an ensemble version of MRQ obtains the best overall accuracy, while being an order of magnitude faster than the runner up method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源