论文标题

钻机空间神经渲染

Rig-space Neural Rendering

论文作者

Borer, Dominik, Yuhang, Lu, Wuelfroth, Laura, Buhmann, Jakob, Guay, Martin

论文摘要

电影制作使用具有复杂专有钻机的高分辨率3D字符,为大型显示器创建最高质量的图像。不幸的是,这些3D资产通常与用于游戏的实时图形引擎,混合现实和实时前视态化不兼容。因此,需要对这些新应用程序重新建模并重新勾勒3D字符,需要数周的工作和艺术认可。我们解决此问题的解决方案是学习直接以钻机参数为条件的原始3D字符的基于紧凑的基于图像的渲染。我们的想法是在许多不同的姿势和视图中呈现角色,并直接从钻机参数中训练深层神经网络以呈现高分辨率图像。已经提出了许多神经渲染技术来从2D骨骼或几何图和紫外线图渲染。但是,这些需要手动工作,并且不与操纵钻机小部件的动画仪工作流程以及插值钻机参数的实时游戏引擎管道兼容。我们扩展架构,以支持场景中其他3D对象的动态重新照明和组成。我们设计了一个网络,该网络有效地生成了多个场景特征图,例如正常,深度,反照率和蒙版,它们与其他场景对象组成以形成最终图像。

Movie productions use high resolution 3d characters with complex proprietary rigs to create the highest quality images possible for large displays. Unfortunately, these 3d assets are typically not compatible with real-time graphics engines used for games, mixed reality and real-time pre-visualization. Consequently, the 3d characters need to be re-modeled and re-rigged for these new applications, requiring weeks of work and artistic approval. Our solution to this problem is to learn a compact image-based rendering of the original 3d character, conditioned directly on the rig parameters. Our idea is to render the character in many different poses and views, and to train a deep neural network to render high resolution images, from the rig parameters directly. Many neural rendering techniques have been proposed to render from 2d skeletons, or geometry and UV maps. However these require manual work, and to do not remain compatible with the animator workflow of manipulating rig widgets, as well as the real-time game engine pipeline of interpolating rig parameters. We extend our architecture to support dynamic re-lighting and composition with other 3d objects in the scene. We designed a network that efficiently generates multiple scene feature maps such as normals, depth, albedo and mask, which are composed with other scene objects to form the final image.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源