论文标题

旋转组的贝叶斯递归估计

Bayesian Recursive Estimation on the Rotation Group

论文作者

Suvorova, Sofia, Howard, Stephen D., Moran, Bill

论文摘要

在旋转组上跟踪是许多现代系统的关键组成部分,用于估计刚体运动的运动。为了解决这个问题,我们在这里描述了一种贝叶斯算法,该算法依赖于在特殊正交(旋转)组上跟踪的方向测量值。它的新颖性在于使用这些组上的最大熵分布作为先验的模型,而合理的近似算法则可以递归实施这种模型。我们以递归封闭形式提供解决方案。在二维情况下,可以精确地计算先前和后分布的参数,并且解决方案的复杂性较低。采用这种方法消除了角度包裹的问题。在较高的维度中,无法计算精确的解决方案,并且有必要在此处完成(非常接近)近似值。我们在模拟中证明,与其他一些方法相比,我们的算法产生非常准确且具有统计学意义的输出。

Tracking on the rotation group is a key component of many modern systems for estimation of the motion of rigid bodies. To address this problem, here we describe a Bayesian algorithm that relies on directional measurements for tracking on the special orthogonal (rotation) group. Its novelty lies in the use of maximum entropy distributions on these groups as models for the priors, and justifiable approximation algorithms that permit recursive implementation of such a model. We provide the solutions in a recursive closed form. In the two-dimensional case the parameters of the prior and posterior distributions can be computed exactly and the solution has low complexity. Adoption of this approach eliminates the problem of angle wrapping. In higher dimensions the exact solution cannot be computed, and it is necessary to make (very close) approximations, which is done here. We demonstrate in simulations that, in contrast with some other approaches, our algorithm produces very accurate and statistically meaningful outputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源