论文标题

深马尔可夫时空分解

Deep Markov Spatio-Temporal Factorization

论文作者

Farnoosh, Amirreza, Rezaei, Behnaz, Sennesh, Eli Zachary, Khan, Zulqarnain, Dy, Jennifer, Satpute, Ajay, Hutchinson, J Benjamin, van de Meent, Jan-Willem, Ostadabbas, Sarah

论文摘要

我们引入了Markov时空分解(DMSTF),这是一种用于动态分析时空数据的生成模型。与其他因素分析方法一样,DMSTF通过时间依赖权重和空间依赖性因素之间的产物近似高维数据。这些权重和因素反过来依次用随机变异推断推断出的较低维度潜在潜在。 DMSTF中的创新是,我们以深度马尔可夫的先验扩展为离散潜伏的延伸,能够表征非线性多模式时间动力学,并执行多维时间序列预测。 DMSTF学习了一个低维空间潜在的,可一般参数化空间因素或其功能形式,以适应高空间维度。我们使用低级潜在表示中的双向复发网络参数化相应的变分分布。这会导致一个柔性的分层深层生成因子分析模型,可以扩展以在存在控制信号的情况下进行时间序列聚类或执行因子分析。我们的实验包括模拟和现实世界数据,表明,DMSTF优于相关的方法,在数据中的预测性能方面揭示了数据中有意义的群集,并且在各种具有潜在非线性时间过渡的域中进行了预测。

We introduce deep Markov spatio-temporal factorization (DMSTF), a generative model for dynamical analysis of spatio-temporal data. Like other factor analysis methods, DMSTF approximates high dimensional data by a product between time dependent weights and spatially dependent factors. These weights and factors are in turn represented in terms of lower dimensional latents inferred using stochastic variational inference. The innovation in DMSTF is that we parameterize weights in terms of a deep Markovian prior extendable with a discrete latent, which is able to characterize nonlinear multimodal temporal dynamics, and perform multidimensional time series forecasting. DMSTF learns a low dimensional spatial latent to generatively parameterize spatial factors or their functional forms in order to accommodate high spatial dimensionality. We parameterize the corresponding variational distribution using a bidirectional recurrent network in the low-level latent representations. This results in a flexible family of hierarchical deep generative factor analysis models that can be extended to perform time series clustering or perform factor analysis in the presence of a control signal. Our experiments, which include simulated and real-world data, demonstrate that DMSTF outperforms related methodologies in terms of predictive performance for unseen data, reveals meaningful clusters in the data, and performs forecasting in a variety of domains with potentially nonlinear temporal transitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源