论文标题
ADS真空吸尘器中的离散对称性,弱耦合猜想和尺度分离
Discrete Symmetries, Weak Coupling Conjecture and Scale Separation in AdS Vacua
论文作者
论文摘要
我们认为,在具有离散仪表对称性的量子重力理论中,例如$ \ textbf {z} _k $,u $ $(1)$量规符号的量规耦合在大$ k $的极限上变得薄弱,如$ g \ to k^{ - α} $,带有$α$ a $ a $ a $ a $ a $ a $ a a $ a正订单1系数。猜想是基于黑洞参数,结合了弱重力猜想(或超对称设置中的BPS)和结合的物种。我们提供基于IIB类型的明确示例$ _5 \ times \ textbf {s}^5/\ textbf {z} _k $ orbifolds,而在ads $ _4 \ times \ times \ times \ textbf {s}^7/\ textbf {z} k $ abjm或bydions上的M theory your n ods $ _4 \ times \ times \ textbf {s}我们研究ADS $ _4 $ IIA类型的IIA型在Cy Erientifold压缩上,并表明某些无限族中的参数尺度分离受离散的$ \ textbf {z} _K $对称性的域墙壁。因此,我们提出了强ADS距离猜想的精制版本,包括对3型的离散对称性顺序的参数依赖性。
We argue that in theories of quantum gravity with discrete gauge symmetries, e.g. $\textbf{Z}_k$, the gauge couplings of U$(1)$ gauge symmetries become weak in the limit of large $k$, as $g\to k^{-α}$ with $α$ a positive order 1 coefficient. The conjecture is based on black hole arguments combined with the Weak Gravity Conjecture (or the BPS bound in the supersymmetric setup), and the species bound. We provide explicit examples based on type IIB on AdS$_5\times \textbf{S}^5/\textbf{Z}_k$ orbifolds, and M-theory on AdS$_4\times\textbf{S}^7/\textbf{Z}_k$ ABJM orbifolds (and their type IIA reductions). We study AdS$_4$ vacua of type IIA on CY orientifold compactifications, and show that the parametric scale separation in certain infinite families is controlled by a discrete $\textbf{Z}_k$ symmetry for domain walls. We accordingly propose a refined version of the strong AdS Distance Conjecture, including a parametric dependence on the order of the discrete symmetry for 3-forms.