论文标题
亚当型算法的新遗憾分析
A new regret analysis for Adam-type algorithms
论文作者
论文摘要
在本文中,我们关注亚当及其变体的理论实践差距(Amsgrad,Adamnc等)。实际上,这些算法与恒定的一阶矩参数$β_{1} $一起使用(通常在$ 0.9 $和$ 0.99 $之间)。从理论上讲,遗憾的保证在线凸优化需要快速衰减的$β_{1} \ to0 $计划。我们表明,这是标准分析的工件,并提出了一个新型框架,该框架使我们能够以恒定的$β_{1} $得出最佳的,数据依赖的后悔界限,而无需进一步的假设。我们还证明了我们对各种不同算法和设置的分析的灵活性。
In this paper, we focus on a theory-practice gap for Adam and its variants (AMSgrad, AdamNC, etc.). In practice, these algorithms are used with a constant first-order moment parameter $β_{1}$ (typically between $0.9$ and $0.99$). In theory, regret guarantees for online convex optimization require a rapidly decaying $β_{1}\to0$ schedule. We show that this is an artifact of the standard analysis and propose a novel framework that allows us to derive optimal, data-dependent regret bounds with a constant $β_{1}$, without further assumptions. We also demonstrate the flexibility of our analysis on a wide range of different algorithms and settings.