论文标题

PointNet ++抓取:从稀疏点云中学习端到端的空间抓握算法

PointNet++ Grasping: Learning An End-to-end Spatial Grasp Generation Algorithm from Sparse Point Clouds

论文作者

Ni, Peiyuan, Zhang, Wenguang, Zhu, Xiaoxiao, Cao, Qixin

论文摘要

抓住新物体对于在非结构化环境中的机器人操纵很重要。当前的大多数作品都需要掌握抽样过程才能获得掌握候选者,并结合了使用深度学习的本地特征提取器。该管道是时间成本的,尤其是当抓地点稀疏时,例如在碗的边缘。在本文中,我们提出了一种端到端的方法,以直接预测所有掌握的姿势,类别和分数(质量)。它将整个稀疏点云作为输入,不需要采样或搜索过程。此外,为了生成多对象场景的训练数据,我们提出了一种基于法拉利Canny指标的快速多对象GRASP检测算法。生成了一个单对象数据集(来自YCB对象集的79个对象,23.7K graSps)和一个多对象数据集(带有注释和掩码的20K点云)。引入了基于PointNet ++的网络与多面罩损耗相结合,以处理不同的训练点。我们网络的整个重量大小仅约116m,使用GEFORCE 840m GPU需要大约102ms的整个预测过程。我们的实验表明,我们的工作获得了71.43%的成功率和91.60%的完成率,其性能优于当前最新作品。

Grasping for novel objects is important for robot manipulation in unstructured environments. Most of current works require a grasp sampling process to obtain grasp candidates, combined with local feature extractor using deep learning. This pipeline is time-costly, expecially when grasp points are sparse such as at the edge of a bowl. In this paper, we propose an end-to-end approach to directly predict the poses, categories and scores (qualities) of all the grasps. It takes the whole sparse point clouds as the input and requires no sampling or search process. Moreover, to generate training data of multi-object scene, we propose a fast multi-object grasp detection algorithm based on Ferrari Canny metrics. A single-object dataset (79 objects from YCB object set, 23.7k grasps) and a multi-object dataset (20k point clouds with annotations and masks) are generated. A PointNet++ based network combined with multi-mask loss is introduced to deal with different training points. The whole weight size of our network is only about 11.6M, which takes about 102ms for a whole prediction process using a GeForce 840M GPU. Our experiment shows our work get 71.43% success rate and 91.60% completion rate, which performs better than current state-of-art works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源