论文标题

人口协议的消息复杂性

Message complexity of population protocols

论文作者

Amir, Talley, Aspnes, James, Doty, David, Eftekhari, Mahsa, Severson, Eric

论文摘要

标准种群协议模型假设,当两个代理相互作用时,每个代理都会观察到另一个药物的整个状态。我们为人口协议启动$ \ textit {message Complacyity} $的研究,其中代理的状态被分为外部可见的$ \ textit {message {message {message} $和一个内部组件,只有其他代理可以在交互中观察到消息。 我们考虑$ O(1)$消息复杂性的情况。 When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states $s(n)$: If $s(n) = o(n)$ then the protocol computes semilinear predicates (unlike the original model, which can compute non-semilinear predicates with $s(n) = O(\log n)$), and otherwise it computes a predicate decidable by a nondeterministic $ O(n \ log S(n))$ - 由太空结合的图灵机。然后,我们介绍新颖的$ o(\ mathrm {polylog}(n))$预期的junta/Lead/Leader选举的时间协议,并且具有很高的可能性正确,并且近似且确切的人口大小与概率1正确计数。最后,我们表明,在概率的情况下,对内部状态的限制性限制了。仅使用$ \ textit {1-bit} $消息。

The standard population protocol model assumes that when two agents interact, each observes the entire state of the other agent. We initiate the study of $\textit{message complexity}$ for population protocols, where the state of an agent is divided into an externally-visible $\textit{message}$ and an internal component, where only the message can be observed by the other agent in an interaction. We consider the case of $O(1)$ message complexity. When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states $s(n)$: If $s(n) = o(n)$ then the protocol computes semilinear predicates (unlike the original model, which can compute non-semilinear predicates with $s(n) = O(\log n)$), and otherwise it computes a predicate decidable by a nondeterministic $O(n \log s(n))$-space-bounded Turing machine. We then introduce novel $O(\mathrm{polylog}(n))$ expected time protocols for junta/leader election and general purpose broadcast correct with high probability, and approximate and exact population size counting correct with probability 1. Finally, we show that the main constraint on the power of bounded-message-size protocols is the size of the internal states: with unbounded internal states, any computable function can be computed with probability 1 in the limit by a protocol that uses only $\textit{1-bit}$ messages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源