论文标题

从时间个人健康数据中生成解释的框架

A Framework for Generating Explanations from Temporal Personal Health Data

论文作者

Harris, Jonathan J., Chen, Ching-Hua, Zaki, Mohammed J.

论文摘要

尽管个人更容易跟踪其个人健康数据(例如,心率,步骤计数,食物日志),但数据收集与产生有意义的解释之间仍然存在广泛的鸿沟,以帮助用户更好地了解他们的数据对他们的含义。随着对数据的理解,用户将能够对新发现的信息采取行动,并致力于努力迈向他们的健康目标。我们旨在通过挖掘数据收集数据和解释生成之间的差距,以获取有趣的行为发现,这些发现可能会提供有关用户倾向的提示。我们的重点是通过一组内容丰富的摘要模板或“原始类型”来提高时间个人健康数据的解释性。这些原型涉及两个基于评估的摘要,可帮助用户评估其健康目标和基于模式的摘要,以解释其隐式行为。除了个体用户外,我们使用的原型基质也用于人群级别的摘要。我们采用我们的方法来从真实用户数据中生成摘要(单变量和多变量),并表明我们的系统可以生成有趣且有用的解释。

Whereas it has become easier for individuals to track their personal health data (e.g., heart rate, step count, food log), there is still a wide chasm between the collection of data and the generation of meaningful explanations to help users better understand what their data means to them. With an increased comprehension of their data, users will be able to act upon the newfound information and work towards striving closer to their health goals. We aim to bridge the gap between data collection and explanation generation by mining the data for interesting behavioral findings that may provide hints about a user's tendencies. Our focus is on improving the explainability of temporal personal health data via a set of informative summary templates, or "protoforms." These protoforms span both evaluation-based summaries that help users evaluate their health goals and pattern-based summaries that explain their implicit behaviors. In addition to individual users, the protoforms we use are also designed for population-level summaries. We apply our approach to generate summaries (both univariate and multivariate) from real user data and show that our system can generate interesting and useful explanations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源