论文标题
基于过程指导的复合数据库的智能多尺度仿真
Intelligent multiscale simulation based on process-guided composite database
论文作者
论文摘要
在本文中,我们提出了一个基于过程建模,材料均匀化,机械机器学习和并发多尺度模拟的集成数据驱动的建模框架。我们对注入的短纤维增强复合材料感兴趣,这些复合材料已被确定为汽车,航空航天和电子工业中的关键材料系统。成型过程在各个长度尺度上诱导空间变化的微观结构,而所产生的强烈各向异性和非线性材料属性仍然具有挑战性,可以通过常规的建模方法来捕获。为了准备我们的机器学习任务的线性弹性训练数据,通过随机重建生成具有不同纤维取向和体积分数的代表性音量元素(RVE)。更重要的是,我们利用最近提出的深层材料网络(DMN)从数据中学习隐藏的微观形态。将基本物理嵌入其构件中,可以将数据驱动的材料模型推算为有效,准确地预测非线性材料行为。通过DMN的转移学习,我们创建了一个统一的过程指导的材料数据库,涵盖了短纤维增强复合材料的全范围的几何描述符。最后,该统一的DMN数据库将实现并与宏观有限元模型相结合,以启用并发的多尺度模拟。从我们的角度来看,在许多其他新兴的多尺度工程系统(例如增材制造和压缩成型)中,提出的框架也很有希望。
In the paper, we present an integrated data-driven modeling framework based on process modeling, material homogenization, mechanistic machine learning, and concurrent multiscale simulation. We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries. The molding process induces spatially varying microstructures across various length scales, while the resulting strongly anisotropic and nonlinear material properties are still challenging to be captured by conventional modeling approaches. To prepare the linear elastic training data for our machine learning tasks, Representative Volume Elements (RVE) with different fiber orientations and volume fractions are generated through stochastic reconstruction. More importantly, we utilize the recently proposed Deep Material Network (DMN) to learn the hidden microscale morphologies from data. With essential physics embedded in its building blocks, this data-driven material model can be extrapolated to predict nonlinear material behaviors efficiently and accurately. Through the transfer learning of DMN, we create a unified process-guided material database that covers a full range of geometric descriptors for short fiber reinforced composites. Finally, this unified DMN database is implemented and coupled with macroscale finite element model to enable concurrent multiscale simulations. From our perspective, the proposed framework is also promising in many other emergent multiscale engineering systems, such as additive manufacturing and compressive molding.