论文标题

$ 1 $ -LAPLACIAN的DIRICHLET问题,具有一般性的单词和$ L^1 $ -DATA

The Dirichlet problem for the $1$-Laplacian with a general singular term and $L^1$-data

论文作者

Latorre, Marta, Oliva, Francescantonio, Petitta, Francesco, de León, Sergio Segura

论文摘要

我们研究了一个椭圆方程的差异问题,涉及$ 1 $ - laplace操作员和一个反应术语,即:$$ \ left \ webt {array} {array} {ll} {ll} \ displayStyle -uplayStyle-Δ_1u = h(x)&\ hbox {in} } \partialΩ\ ,, \ end {array} \ right。 $$其中$ω\ subset \ mathbb {r}^n $是具有Lipschitz边界的开放式集合,$ f \ in l^1(ω)$是非负的,而$ h $是一个连续的真实功能,可能在零时可能会爆炸。我们研究了数据的最佳范围,以获得非负溶液的存在,不存在和(任何预期)唯一性。

We study the Dirichlet problem for an elliptic equation involving the $1$-Laplace operator and a reaction term, namely: $$ \left\{\begin{array}{ll} \displaystyle -Δ_1 u =h(u)f(x)&\hbox{in }Ω\,,\\ u=0&\hbox{on }\partialΩ\,, \end{array}\right. $$ where $ Ω\subset \mathbb{R}^N$ is an open bounded set having Lipschitz boundary, $f\in L^1(Ω)$ is nonnegative, and $h$ is a continuous real function that may possibly blow up at zero. We investigate optimal ranges for the data in order to obtain existence, nonexistence and (whenever expected) uniqueness of nonnegative solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源