论文标题

一种新颖的深度学习架构,用于解码脑电图的想象中的演讲

A Novel Deep Learning Architecture for Decoding Imagined Speech from EEG

论文作者

Panachakel, Jerrin Thomas, Ramakrishnan, A. G., Ananthapadmanabha, T. V.

论文摘要

深度学习领域的最新进展尚未完全用于解码想象的语音,这主要是因为没有足够的培训样本来训练深层网络。在本文中,我们提出了一种新颖的体系结构,该架构采用了深层神经网络(DNN)来对ASU想象的语音数据集中相应的EEG信号中的“和“合作”中的单词分类。最能捕获潜在皮质活性的九个EEG通道是使用常见空间模式(CSP)选择的,并被视为独立的数据向量。离散小波变换(DWT)用于特征提取。据我们所知,到目前为止,DNN尚未被用作解码想象的语音的分类器。将所选的与每个想象的单词相对应的EEG通道视为独立的数据向量有助于提供足够数量的样品来训练DNN。对于每个测试试验,最终类标签是通过在试验中考虑的各个渠道的分类结果上应用多数投票获得的。我们已经实现了与最新结果相当的准确性。通过使用高密度的脑电图采集系统与其他深度学习技术(例如长期记忆)结合使用,可以进一步改善结果。

The recent advances in the field of deep learning have not been fully utilised for decoding imagined speech primarily because of the unavailability of sufficient training samples to train a deep network. In this paper, we present a novel architecture that employs deep neural network (DNN) for classifying the words "in" and "cooperate" from the corresponding EEG signals in the ASU imagined speech dataset. Nine EEG channels, which best capture the underlying cortical activity, are chosen using common spatial pattern (CSP) and are treated as independent data vectors. Discrete wavelet transform (DWT) is used for feature extraction. To the best of our knowledge, so far DNN has not been employed as a classifier in decoding imagined speech. Treating the selected EEG channels corresponding to each imagined word as independent data vectors helps in providing sufficient number of samples to train a DNN. For each test trial, the final class label is obtained by applying a majority voting on the classification results of the individual channels considered in the trial. We have achieved accuracies comparable to the state-of-the-art results. The results can be further improved by using a higher-density EEG acquisition system in conjunction with other deep learning techniques such as long short-term memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源