论文标题

Ser-Fiq:基于随机嵌入鲁棒性的面部图像质量的无监督估计

SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness

论文作者

Terhörst, Philipp, Kolf, Jan Niklas, Damer, Naser, Kirchbuchner, Florian, Kuijper, Arjan

论文摘要

面部图像质量是实现高性能面部识别系统的重要因素。面部质量评估旨在估计面部图像识别的适用性。先前的工作提出了需要人为或人为标记的质量值的监督解决方案。但是,这两种标签机制都容易出错,因为它们不依赖于质量的明确定义,并且可能不知道使用的面部识别系统的最佳特征。避免使用不准确的质量标签,我们提出了一个新颖的概念,以根据任意面部识别模型来测量面部质量。通过确定面部模型的随机子网产生的嵌入变化,样品表示的鲁棒性,因此可以估算其质量。实验是在三个公开可用数据库的跨数据库评估设置中进行的。我们将我们提出的两个面部嵌入的解决方案与学术界和行业的六种最先进方法进行了比较。结果表明,我们无监督的解决方案在大多数研究的情况下都优于所有其他方法。与以前的作品相反,建议的解决方案在所有情况下都表现出稳定的性能。利用部署的面部识别模型为我们的面部质量评估方法,可以完全避免训练阶段,进一步超过所有基线方法。我们的解决方案可以很容易地集成到当前的面部识别系统中,并可以修改为其他超出面部识别的任务。

Face image quality is an important factor to enable high performance face recognition systems. Face quality assessment aims at estimating the suitability of a face image for recognition. Previous work proposed supervised solutions that require artificially or human labelled quality values. However, both labelling mechanisms are error-prone as they do not rely on a clear definition of quality and may not know the best characteristics for the utilized face recognition system. Avoiding the use of inaccurate quality labels, we proposed a novel concept to measure face quality based on an arbitrary face recognition model. By determining the embedding variations generated from random subnetworks of a face model, the robustness of a sample representation and thus, its quality is estimated. The experiments are conducted in a cross-database evaluation setting on three publicly available databases. We compare our proposed solution on two face embeddings against six state-of-the-art approaches from academia and industry. The results show that our unsupervised solution outperforms all other approaches in the majority of the investigated scenarios. In contrast to previous works, the proposed solution shows a stable performance over all scenarios. Utilizing the deployed face recognition model for our face quality assessment methodology avoids the training phase completely and further outperforms all baseline approaches by a large margin. Our solution can be easily integrated into current face recognition systems and can be modified to other tasks beyond face recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源