论文标题

Lanczos方法的均匀误差估计值

Uniform Error Estimates for the Lanczos Method

论文作者

Urschel, John C.

论文摘要

Lanczos方法是解决极端对称特征值问题的最强大,最基本的技术之一。基于收敛性的错误估计在很大程度上取决于特征值差距。实际上,此差距通常相对较小,导致严重的错误估计值。避免此问题的一种方法是通过使用统一误差估计值,即仅取决于矩阵的维度和迭代次数。在这项工作中,我们证明了Lanczos方法明确的上和下部均匀误差估计。这些下限与数值结果配对,这意味着在所有$ n \ times n $ symmetric矩阵上,兰开斯方法的$ m $迭代的最大误差确实取决于实践中的尺寸$ n $。极端特征值的改进边界立即转化为对称正定基质的条件数的误差估计。此外,我们证明了具有一定程度的特征值规律性或特征值将其融合到某些有限的经验光谱分布的矩阵的矩阵结果更具体的结果。通过数值实验,我们表明,本文的理论估计确实适用于合理尺寸矩阵的实际计算。

The Lanczos method is one of the most powerful and fundamental techniques for solving an extremal symmetric eigenvalue problem. Convergence-based error estimates depend heavily on the eigenvalue gap. In practice, this gap is often relatively small, resulting in significant overestimates of error. One way to avoid this issue is through the use of uniform error estimates, namely, bounds that depend only on the dimension of the matrix and the number of iterations. In this work, we prove explicit upper and lower uniform error estimates for the Lanczos method. These lower bounds, paired with numerical results, imply that the maximum error of $m$ iterations of the Lanczos method over all $n \times n$ symmetric matrices does indeed depend on the dimension $n$ in practice. The improved bounds for extremal eigenvalues translate immediately to error estimates for the condition number of a symmetric positive definite matrix. In addition, we prove more specific results for matrices that possess some level of eigenvalue regularity or whose eigenvalues converge to some limiting empirical spectral distribution. Through numerical experiments, we show that the theoretical estimates of this paper do apply to practical computations for reasonably sized matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源