论文标题

具有旋转对称性的图形的灵活位置

Flexible placements of graphs with rotational symmetry

论文作者

Dewar, Sean, Grasegger, Georg, Legerský, Jan

论文摘要

我们研究了对称图在平面中的$ n $倍旋转对称位置的存在,允许连续变形,从而保持对称性和相邻顶点之间的距离。我们表明,当且仅当图形具有满足对称性上的额外属性时,就存在这样的灵活位置; NAC色是通过两种颜色的滤光边缘着色,因此每个循环都是单色的,或者至少有两个颜色的边缘。

We study the existence of an $n$-fold rotationally symmetric placement of a symmetric graph in the plane allowing a continuous deformation that preserves the symmetry and the distances between adjacent vertices. We show that such a flexible placement exists if and only if the graph has a NAC-colouring satisfying an additional property on the symmetry; a NAC-colouring is a surjective edge colouring by two colours such that every cycle is either monochromatic, or there are at least two edges of each colour.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源