论文标题

Fedner:具有联合学习

FedNER: Privacy-preserving Medical Named Entity Recognition with Federated Learning

论文作者

Ge, Suyu, Wu, Fangzhao, Wu, Chuhan, Qi, Tao, Huang, Yongfeng, Xie, Xing

论文摘要

医疗命名实体识别(NER)在智能医疗保健中有广泛的应用。足够的标记数据对于培训准确的医疗模型至关重要。但是,单个医疗平台中标记的数据通常受到限制。尽管标记的数据集可能存在于许多不同的医疗平台中,但由于医疗数据对隐私敏感,因此不能直接共享它们。在本文中,我们提出了一种基于联合学习的保护隐私的医学NER方法,该方法可以利用不同平台中的标记数据来促进医疗模型的培训,并消除在不同平台之间交换原始数据的需求。由于不同平台中标记的数据通常在实体类型和注释标准上存在一些差异,而不是限制不同的平台以共享相同的模型,而是将每个平台中的医疗模型分解为共享模块和一个私人模块。私有模块用于捕获每个平台中本地数据的特征,并使用本地标记的数据进行更新。共享模块是在不同的医疗平台上学习的,以捕获共享的NER知识。其来自不同平台的本地梯度汇总以更新全局共享模块,该模块将进一步传递到每个平台以更新其本地共享模块。对三个公开可用数据集进行的实验验证了我们方法的有效性。

Medical named entity recognition (NER) has wide applications in intelligent healthcare. Sufficient labeled data is critical for training accurate medical NER model. However, the labeled data in a single medical platform is usually limited. Although labeled datasets may exist in many different medical platforms, they cannot be directly shared since medical data is highly privacy-sensitive. In this paper, we propose a privacy-preserving medical NER method based on federated learning, which can leverage the labeled data in different platforms to boost the training of medical NER model and remove the need of exchanging raw data among different platforms. Since the labeled data in different platforms usually has some differences in entity type and annotation criteria, instead of constraining different platforms to share the same model, we decompose the medical NER model in each platform into a shared module and a private module. The private module is used to capture the characteristics of the local data in each platform, and is updated using local labeled data. The shared module is learned across different medical platform to capture the shared NER knowledge. Its local gradients from different platforms are aggregated to update the global shared module, which is further delivered to each platform to update their local shared modules. Experiments on three publicly available datasets validate the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源