论文标题
罗马(k,k) - 图的数量
The Roman (k,k)-domatic number of a graph
论文作者
论文摘要
让$ k $成为一个积极的整数。图$ g $上的a {\ em roman $ k $ domination}是标签$ f:v(g)\ longrightArrow \ {0,1,2,2 \} $,使每个标签0带有标签0至少$ k $ neighen的每个顶点都有标签2的标签2。 $ k $ - $ g $上的函数,其中$ \ sum_ {i = 1}^df_i(v)\ le 2k $ in V(g)$中的每个$ v \ in v(g)$,称为a {\ em roman $(k,k)$ - primanderating family}(占主导地位)$ g $ g $ g $。罗马$(k,k)$ - $ g $上的主要功能数量是$ g $的{\ em roman $(k,k)$ - domatic number},由$ d_ {r}^k(g)$表示。请注意,罗马$(1,1)$ - domatic Number $ d_ {r}^1(g)$是通常的roman domatic number $ d_ {r}(g)$。在本文中,我们启动了罗马$(k,k)$ - dimatic数字的研究,并以$ d_ {r}^k(g)$提出了尖锐的界限。此外,我们确定了罗马$(k,k)$ - 某些图的命令数。我们的一些结果扩展了Sheikholeslami和Volkmann在2010年对罗马Dimatic数字提供的结果。
Let $k$ be a positive integer. A {\em Roman $k$-dominating function} on a graph $G$ is a labeling $f:V (G)\longrightarrow \{0, 1, 2\}$ such that every vertex with label 0 has at least $k$ neighbors with label 2. A set $\{f_1,f_2,\ldots,f_d\}$ of distinct Roman $k$-dominating functions on $G$ with the property that $\sum_{i=1}^df_i(v)\le 2k$ for each $v\in V(G)$, is called a {\em Roman $(k,k)$-dominating family} (of functions) on $G$. The maximum number of functions in a Roman $(k,k)$-dominating family on $G$ is the {\em Roman $(k,k)$-domatic number} of $G$, denoted by $d_{R}^k(G)$. Note that the Roman $(1,1)$-domatic number $d_{R}^1(G)$ is the usual Roman domatic number $d_{R}(G)$. In this paper we initiate the study of the Roman $(k,k)$-domatic number in graphs and we present sharp bounds for $d_{R}^k(G)$. In addition, we determine the Roman $(k,k)$-domatic number of some graphs. Some of our results extend those given by Sheikholeslami and Volkmann in 2010 for the Roman domatic number.