论文标题
MRI分类算法在第三纪记忆中心临床常规队列中的准确性
Accuracy of MRI Classification Algorithms in a Tertiary Memory Center Clinical Routine Cohort
论文作者
论文摘要
背景:自动体积软件(AVS)最近已广泛地为神经放射学家使用。使用AVS的MRI体积可以通过鉴定区域萎缩来支持痴呆症的诊断。此外,使用机器学习技术的自动分类器最近已成为有前途的诊断方法。但是,AVS和自动分类器的性能主要在研究数据集的人工设置中进行了评估。目标:我们的目的是评估两个AVS的性能和一个自动分类器在记忆诊所的临床常规状态下的临床状态。Methods:我们研究了来自单个记忆中心群体的239名认知障碍的239名患者。使用临床常规T1加权MRI,我们评估了使用两个AV(Volbrain和Neuroreader $^{TM} $)的单变量体积的分类性能; 2)支持向量机(SVM)自动分类器,使用AVS量(SVM-AVS)或整个灰质(SVM-WGM); 3)两位神经放射学家的阅读。性能度量是平衡的诊断精度。参考标准是三位神经科医生使用临床,生物学(脑脊液)和成像数据以及遵循国际标准的共识诊断。反应:单变量AVS量仅提供了中等准确性(带有海马体积的46%至71%)。使用SVM-AVS分类器(52%至85%)时,精度提高了,接近SVM-WGM(52%至90%)。 SVM-AVS和SVM-WGM之间的神经放射学家的视觉分类范围:在记忆诊所的常规实践中,使用AVS提供的体积测量仅产生适度的精度。自动分类器可以提高准确性,并且可能是有助于诊断的有用工具。
BACKGROUND:Automated volumetry software (AVS) has recently become widely available to neuroradiologists. MRI volumetry with AVS may support the diagnosis of dementias by identifying regional atrophy. Moreover, automatic classifiers using machine learning techniques have recently emerged as promising approaches to assist diagnosis. However, the performance of both AVS and automatic classifiers has been evaluated mostly in the artificial setting of research datasets.OBJECTIVE:Our aim was to evaluate the performance of two AVS and an automatic classifier in the clinical routine condition of a memory clinic.METHODS:We studied 239 patients with cognitive troubles from a single memory center cohort. Using clinical routine T1-weighted MRI, we evaluated the classification performance of: 1) univariate volumetry using two AVS (volBrain and Neuroreader$^{TM}$); 2) Support Vector Machine (SVM) automatic classifier, using either the AVS volumes (SVM-AVS), or whole gray matter (SVM-WGM); 3) reading by two neuroradiologists. The performance measure was the balanced diagnostic accuracy. The reference standard was consensus diagnosis by three neurologists using clinical, biological (cerebrospinal fluid) and imaging data and following international criteria.RESULTS:Univariate AVS volumetry provided only moderate accuracies (46% to 71% with hippocampal volume). The accuracy improved when using SVM-AVS classifier (52% to 85%), becoming close to that of SVM-WGM (52 to 90%). Visual classification by neuroradiologists ranged between SVM-AVS and SVM-WGM.CONCLUSION:In the routine practice of a memory clinic, the use of volumetric measures provided by AVS yields only moderate accuracy. Automatic classifiers can improve accuracy and could be a useful tool to assist diagnosis.