论文标题
使用延迟差分代数方程的互连系统的固定顺序h-赋值控制
Fixed-order H-infinity control for interconnected systems using delay differential algebraic equations
论文作者
论文摘要
我们为一般时间延迟系统分析和设计H-核控制器,并在系统的状态,输入和输出中进行时间延期。我们允许设计师选择控制器的顺序,并在控制器中引入恒定的时间延期。工厂和控制器的闭环系统由延迟差分方程(DDAE)的系统建模。 DDAE建模框架的优势在于,可以在不使用任何消除技术的情况下以系统的方式处理容易延迟的系统和控制器的任何互连。我们提出了一种预测校正算法,用于DDAE所描述的系统的H----算术规范计算。为此,我们分析了H-赋值标准的特性。特别是,我们说明它可能与任意较小的延迟扰动有关。由于这种敏感性,我们引入了强大的H-赋值标准,该规范明确考虑了小延迟扰动,在任何实际控制应用中都不可避免。我们提出了一种数值算法,以计算DDAE的强H-核定标准。使用该算法和强度H-核定标准相对于控制器参数的梯度的计算,我们将基于非平滑,非凸优化方法的闭环系统的强h-界限范围最小化。通过这种方法,我们将使用规定的订单或结构调整控制器参数和设计H-侵点控制器。
We analyze and design H-infinity controllers for general time-delay systems with time-delays in systems' state, inputs and outputs. We allow the designer to choose the order of the controller and to introduce constant time-delays in the controller. The closed-loop system of the plant and the controller is modeled by a system of delay differential algebraic equations (DDAEs). The advantage of the DDAE modeling framework is that any interconnection of systems and controllers prone to various types of delays can be dealt with in a systematic way, without using any elimination technique. We present a predictor-correct algorithm for the H-infinity norm computation of systems described by DDAEs. Instrumental to this we analyze the properties of the H-infinity norm. In particular, we illustrate that it may be sensitive with respect to arbitrarily small delay perturbations. Due to this sensitivity, we introduce the strong H-infinity norm which explicitly takes into account small delay perturbations, inevitable in any practical control application. We present a numerical algorithm to compute the strong H-infinity norm for DDAEs. Using this algorithm and the computation of the gradient of the strong H-infinity norm with respect to the controller parameters, we minimize the strong H-infinity norm of the closed-loop system based on non-smooth, non-convex optimization methods. By this approach, we tune the controller parameters and design H-infinity controllers with a prescribed order or structure.