论文标题

在时间域中严格凸出等离激元谐振器的模态近似:麦克斯韦方程

Modal approximation for strictly convex plasmonic resonators in the time domain: the Maxwell's equations

论文作者

Ammari, Habib, Millien, Pierre, Vanel, Alice L.

论文摘要

我们研究了通过严格凸出的金属纳米粒子散射的电磁场的可能扩展,其分散材料参数位于低频方案中的同质培养基中,作为复杂频率下振荡的模式的总和(在无限限度下在无限的频率下),在物理学文献中已知,是quasi-norm-norm norm-norm-norm norm speptions的扩展。我们表明,这种扩展在静态状态下是有效的,我们可以使用有限数量的模式近似电场。然后,我们使用扰动光谱理论来显示等离子共振的某个状态的存在,作为麦克斯韦方程非零频率的分解的极点。我们表明,在时域中,电场可以写成以复杂频率振荡的模式的总和。我们介绍了未在无穷大的未定数分歧的重量化量。

We study the possible expansion of the electromagnetic field scattered by a strictly convex metallic nanoparticle with dispersive material parameters placed in a homogeneous medium in a low-frequency regime as a sum of modes oscillating at complex frequencies (diverging at infinity), known in the physics literature as the quasi-normal modes expansion. We show that such an expansion is valid in the static regime and that we can approximate the electric field with a finite number of modes. We then use perturbative spectral theory to show the existence, in a certain regime, of plasmonic resonances as poles of the resolvent for Maxwell's equations with non-zero frequency. We show that, in the time domain, the electric field can be written as a sum of modes oscillating at complex frequencies. We introduce renormalised quantities that do not diverge exponentially at infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源