论文标题

非平衡相变和随机对应物的确定性可逆模型

Deterministic reversible model of non-equilibrium phase transitions and stochastic counterpart

论文作者

Cirillo, Emilio N. M., Colangeli, Matteo, Muntean, Adrian, Richardson, Omar, Rondoni, Lamberto

论文摘要

n点颗粒在台球表中移动,由两个通过直道连接的圆形腔制成。通常修改了通常的台球动力学,以保持确定性,相位空间的保留和时间逆转。颗粒以直线的形式移动并像往常一样在桌子的边界处进行弹性反射,但是在频道中远离空腔的颗粒扭转运动(反弹),如果它们的数量超过给定的阈值t。变成固定的不均匀的。与修改后的Ehrenfest的等效性两个urn模型是由台球的刻薄性而没有反弹的,这使我们能够获得准确描述数值台球模拟结果的分析结果。因此,还引入了一个准确的可解决的模型,该模型还引入了非平衡相变。

N point particles move within a billiard table made of two circular cavities connected by a straight channel. The usual billiard dynamics is modified so that it remains deterministic, phase space volumes preserving and time reversal invariant. Particles move in straight lines and are elastically reflected at the boundary of the table, as usual, but those in a channel that are moving away from a cavity invert their motion (rebound), if their number exceeds a given threshold T. When the geometrical parameters of the billiard table are fixed, this mechanism gives rise to non--equilibrium phase transitions in the large N limit: letting T/N decrease, the homogeneous particle distribution abruptly turns into a stationary inhomogeneous one. The equivalence with a modified Ehrenfest two urn model, motivated by the ergodicity of the billiard with no rebound, allows us to obtain analytical results that accurately describe the numerical billiard simulation results. Thus, a stochastic exactly solvable model that exhibits non-equilibrium phase transitions is also introduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源