论文标题

通过群堆双gan合并的无数据知识合并

Data-Free Knowledge Amalgamation via Group-Stack Dual-GAN

论文作者

Ye, Jingwen, Ji, Yixin, Wang, Xinchao, Gao, Xin, Song, Mingli

论文摘要

深度学习的最新进展为学习一个网络提供了从预先训练的卷积神经网络(CNN)模型合并多个知识流的程序,从而降低了注释成本。但是,几乎所有现有的方法都需要大量的培训数据,这可能由于隐私或传输问题而无法使用。在本文中,我们提出了一种无数据的知识融合策略,以制定一个行为良好的多任务学生网络,从多个单一/多任务教师中。主要思想是构建具有两个双发电机的组堆栈生成对抗网络(GAN)。首先,通过重建近似用于预先培训教师的原始数据集的图像来培训一个发电机来收集知识。然后,通过从前发电机作为输入的输出来训练双发电机。最后,我们将双部分发电机视为目标网络并重组它。正如多标签分类的几个基准测试所证明的那样,即使与一些全面监督的方法相比,提出的无培训数据的拟议方法也可以达到令人惊讶的竞争结果。

Recent advances in deep learning have provided procedures for learning one network to amalgamate multiple streams of knowledge from the pre-trained Convolutional Neural Network (CNN) models, thus reduce the annotation cost. However, almost all existing methods demand massive training data, which may be unavailable due to privacy or transmission issues. In this paper, we propose a data-free knowledge amalgamate strategy to craft a well-behaved multi-task student network from multiple single/multi-task teachers. The main idea is to construct the group-stack generative adversarial networks (GANs) which have two dual generators. First one generator is trained to collect the knowledge by reconstructing the images approximating the original dataset utilized for pre-training the teachers. Then a dual generator is trained by taking the output from the former generator as input. Finally we treat the dual part generator as the target network and regroup it. As demonstrated on several benchmarks of multi-label classification, the proposed method without any training data achieves the surprisingly competitive results, even compared with some full-supervised methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源