论文标题

ECHOLOCK:努力努力移动用户识别

EchoLock: Towards Low Effort Mobile User Identification

论文作者

Yang, Yilin, Wang, Chen, Chen, Yingying, Wang, Yan

论文摘要

用户标识在我们与移动设备交互的方式中起关键作用。许多现有的身份验证方法需要用户或专门的传感硬件的主动输入,并且对移动设备使用情况的研究表现出对较小的不便程序的浓厚兴趣。在本文中,我们提出了Echolock,这是一种低努力标识方案,该方案通过通过商品麦克风和扬声器传感手几何形状来验证用户。这些声学信号在与用户的手接触时会产生不同的结构传播声音反射,这些声音可以根据他们的移动设备的方式来区分不同的人。我们处理这些反射以在时间和频域中得出独特的声学特征,这可以有效地代表生理和行为特征,例如手写轮廓,手指大小,保持强度和手势。此外,开发基于学习的算法是为了在各种环境和条件下稳健地识别用户。在关键用例场景中,我们对20名参与者进行了广泛的实验,并研究了各种攻击模型,以证明我们提出的系统的性能。我们的结果表明,Echolock能够验证精度超过90%的用户,而无需用户的任何主动输入。

User identification plays a pivotal role in how we interact with our mobile devices. Many existing authentication approaches require active input from the user or specialized sensing hardware, and studies on mobile device usage show significant interest in less inconvenient procedures. In this paper, we propose EchoLock, a low effort identification scheme that validates the user by sensing hand geometry via commodity microphones and speakers. These acoustic signals produce distinct structure-borne sound reflections when contacting the user's hand, which can be used to differentiate between different people based on how they hold their mobile devices. We process these reflections to derive unique acoustic features in both the time and frequency domain, which can effectively represent physiological and behavioral traits, such as hand contours, finger sizes, holding strength, and gesture. Furthermore, learning-based algorithms are developed to robustly identify the user under various environments and conditions. We conduct extensive experiments with 20 participants using different hardware setups in key use case scenarios and study various attack models to demonstrate the performance of our proposed system. Our results show that EchoLock is capable of verifying users with over 90% accuracy, without requiring any active input from the user.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源