论文标题

使用自我注意力从可穿戴传感器数据识别的人类活动识别

Human Activity Recognition from Wearable Sensor Data Using Self-Attention

论文作者

Mahmud, Saif, Tonmoy, M Tanjid Hasan, Bhaumik, Kishor Kumar, Rahman, A K M Mahbubur, Amin, M Ashraful, Shoyaib, Mohammad, Khan, Muhammad Asif Hossain, Ali, Amin Ahsan

论文摘要

人体磨损传感器数据的识别在捕获时间序列信号的空间和时间依赖性方面构成了固有的挑战。在这方面,现有的复发或卷积或其活动识别的混合模型难以从传感器阅读序列的特征空间捕获时空上下文。为了解决这个复杂的问题,我们提出了一个基于自我注意力的神经网络模型,该模型已过时,并利用不同类型的注意机制来生成用于分类的较高维度的特征表示。我们对四个流行的公开HAR数据集进行了广泛的实验:PAMAP2,机会,Skoda和USC-Had。我们的模型在基准测试对象和一项受试者评估中的最新模型中实现了显着的性能改善。我们还观察到,我们的模型产生的传感器注意图能够捕获传感器在预测不同活动类别中的模态和位置的重要性。

Human Activity Recognition from body-worn sensor data poses an inherent challenge in capturing spatial and temporal dependencies of time-series signals. In this regard, the existing recurrent or convolutional or their hybrid models for activity recognition struggle to capture spatio-temporal context from the feature space of sensor reading sequence. To address this complex problem, we propose a self-attention based neural network model that foregoes recurrent architectures and utilizes different types of attention mechanisms to generate higher dimensional feature representation used for classification. We performed extensive experiments on four popular publicly available HAR datasets: PAMAP2, Opportunity, Skoda and USC-HAD. Our model achieve significant performance improvement over recent state-of-the-art models in both benchmark test subjects and Leave-one-subject-out evaluation. We also observe that the sensor attention maps produced by our model is able capture the importance of the modality and placement of the sensors in predicting the different activity classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源