论文标题

在71个位置的玻色扣量子模拟器中观察量规不变性

Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator

论文作者

Yang, Bing, Sun, Hui, Ott, Robert, Wang, Han-Yi, Zache, Torsten V., Halimeh, Jad C., Yuan, Zhen-Sheng, Hauke, Philipp, Pan, Jian-Wei

论文摘要

在粒子物理的标准模型中提出的基本粒子的现代描述是建立在规格理论的基础上的。衡量理论通过局部对称约束实施物理基本定律。例如,在量子电动力学中,高斯定律引入了带电物质和电磁场之间的固有局部关系,该磁场可保护许多显着的物理特性,包括无质量的光子和长期的库仑定律。通过古典计算机解决量规的理论是一项极其艰巨的任务,它刺激了在显微镜设计的量子设备中模拟量规理论动态的努力。以前的成就实现了密度依赖性PEIERLS阶段,而没有定义局部对称性,将映射映射到有效模型上以集成物质或电场,或者仅限于非常小的系统。基本规格对称性尚未通过实验观察到。在这里,我们报告了扩展的U(1)晶格仪理论的量子模拟,并在包括物质和量规场的多体系统中实验量化了量规不变性。这些在71个位点的光学超级晶格中的无缺陷阵列中实现。我们证明了模型参数的完全可调节性,并通过跨越量子相变的扫描来基于物质的相互作用。通过高保真操纵技术启用,我们通过从相关的原子职业中提取局部规范不变状态的概率来衡量高斯定律的违反程度。我们的工作提供了一种使用可控的大规模量子模拟器在基本颗粒相互作用中探索量规对称性的方法。

The modern description of elementary particles, as formulated in the Standard Model of particle physics, is built on gauge theories. Gauge theories implement fundamental laws of physics by local symmetry constraints. For example, in quantum electrodynamics, Gauss's law introduces an intrinsic local relation between charged matter and electromagnetic fields, which protects many salient physical properties including massless photons and a long-ranged Coulomb law. Solving gauge theories by classical computers is an extremely arduous task, which has stimulated a vigorous effort to simulate gauge-theory dynamics in microscopically engineered quantum devices. Previous achievements implemented density-dependent Peierls phases without defining a local symmetry, realized mappings onto effective models to integrate out either matter or electric fields, or were limited to very small systems. The essential gauge symmetry has not been observed experimentally. Here, we report the quantum simulation of an extended U(1) lattice gauge theory, and experimentally quantify the gauge invariance in a many-body system comprising matter and gauge fields. These are realized in defect-free arrays of bosonic atoms in an optical superlattice of 71 sites. We demonstrate full tunability of the model parameters and benchmark the matter--gauge interactions by sweeping across a quantum phase transition. Enabled by high-fidelity manipulation techniques, we measure the degree to which Gauss's law is violated by extracting probabilities of locally gauge-invariant states from correlated atom occupations. Our work provides a way to explore gauge symmetry in the interplay of fundamental particles using controllable large-scale quantum simulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源