论文标题
DRST:密集采样光场重建的深度残留剪切转换
DRST: Deep Residual Shearlet Transform for Densely Sampled Light Field Reconstruction
论文作者
论文摘要
基于图像的渲染方法(IBR)方法使用剪切式变换(ST)是密集采样光场(DSLF)重建的最有效方法之一。基于ST的DSLF重建通常依赖于剪切域中的Epolar-Plane图像(EPI)稀疏正则化的迭代阈值算法,涉及图像结构域和剪力结构域之间的数十个转换,这些域是一般时间耗时。为了克服这一局限性,本文提出了一种基于学习的新型ST方法,称为“深残留剪切变换(DRST)”。具体而言,对于输入稀疏采样的EPI,DRST采用了深层完全卷积的神经网络(CNN)来预测剪切域中的剪切系数的残留物,以重建图像域中的密集采样EPI。 DRST网络仅通过利用精心设计的掩码来对合成稀疏的光场(SSLF)数据进行训练。对三个具有不同中等差异范围(8-16个像素)不同的现实世界中的光场评估数据集的实验结果证明了所提出的基于学习的DRST方法比基于非学习的ST方法的DSLF重建方法的优越性。此外,DRST至少在ST上提供了2.4倍的速度。
The Image-Based Rendering (IBR) approach using Shearlet Transform (ST) is one of the most effective methods for Densely-Sampled Light Field (DSLF) reconstruction. The ST-based DSLF reconstruction typically relies on an iterative thresholding algorithm for Epipolar-Plane Image (EPI) sparse regularization in shearlet domain, involving dozens of transformations between image domain and shearlet domain, which are in general time-consuming. To overcome this limitation, a novel learning-based ST approach, referred to as Deep Residual Shearlet Transform (DRST), is proposed in this paper. Specifically, for an input sparsely-sampled EPI, DRST employs a deep fully Convolutional Neural Network (CNN) to predict the residuals of the shearlet coefficients in shearlet domain in order to reconstruct a densely-sampled EPI in image domain. The DRST network is trained on synthetic Sparsely-Sampled Light Field (SSLF) data only by leveraging elaborately-designed masks. Experimental results on three challenging real-world light field evaluation datasets with varying moderate disparity ranges (8 - 16 pixels) demonstrate the superiority of the proposed learning-based DRST approach over the non-learning-based ST method for DSLF reconstruction. Moreover, DRST provides a 2.4x speedup over ST, at least.