论文标题
不稳定同质组的较高结构
The higher structure of unstable homotopy groups
论文作者
论文摘要
我们构建了某些由$ {n \ geq 2} $ $δ^{n} $的单纯类别索引的不稳定的高阶同拷贝操作,并证明了一个楔形楔形组中的所有元素均在此类操作下由Whitehead产品和组结构生成。这为科恩定理提供了更强的不稳定类似物,以稳定同型分解。
We construct certain unstable higher-order homotopy operations indexed by the simplex categories of $Δ^{n}$ for ${n\geq 2}$ and prove that all elements in the homotopy groups of a wedge of spheres are generated under such operations by Whitehead products and the group structure. This provides a stronger unstable analogue of Cohen's theorem on the decomposition of stable homotopy.