论文标题
Magiceyes:混合现实的大型眼目光估计数据集
MagicEyes: A Large Scale Eye Gaze Estimation Dataset for Mixed Reality
论文作者
论文摘要
随着虚拟和混合现实(XR)设备的出现,眼睛跟踪在计算机视觉社区中受到了极大的关注。眼睛凝视估计是XR中的关键组成部分 - 启用节能渲染,多焦点显示以及与内容的有效相互作用。在头部安装的XR设备中,将眼睛成像离轴,以避免阻止视野。这导致了推断与眼睛相关的数量的挑战,并同时提供了开发基于准确和强大的学习方法的机会。为此,我们提出了Magiceyes,这是使用带有全面地面真相标签的真实MR设备收集的第一个大型眼睛数据集。 Magiceyes包括$ 587 $的主题,其$ 80,000 $的人体标签地面真相图像和带有凝视目标标签的800,000美元图像。我们评估了Magiceyes上的几种最先进的方法,还提出了一种新的多任务眼睛模型,该模型旨在在单个正向通道中检测角膜,闪烁和学生以及眼睛分割。
With the emergence of Virtual and Mixed Reality (XR) devices, eye tracking has received significant attention in the computer vision community. Eye gaze estimation is a crucial component in XR -- enabling energy efficient rendering, multi-focal displays, and effective interaction with content. In head-mounted XR devices, the eyes are imaged off-axis to avoid blocking the field of view. This leads to increased challenges in inferring eye related quantities and simultaneously provides an opportunity to develop accurate and robust learning based approaches. To this end, we present MagicEyes, the first large scale eye dataset collected using real MR devices with comprehensive ground truth labeling. MagicEyes includes $587$ subjects with $80,000$ images of human-labeled ground truth and over $800,000$ images with gaze target labels. We evaluate several state-of-the-art methods on MagicEyes and also propose a new multi-task EyeNet model designed for detecting the cornea, glints and pupil along with eye segmentation in a single forward pass.