论文标题

乳腺癌组织病理学图像中的基于对象检测的深度检测分析

Deep Object Detection based Mitosis Analysis in Breast Cancer Histopathological Images

论文作者

Sohail, Anabia, Mukhtar, Muhammad Ahsan, Khan, Asifullah, Zafar, Muhammad Mohsin, Zameer, Aneela, Khan, Saranjam

论文摘要

乳房组织活检的经验评估被认为是肿瘤分级和癌症进展中重要的预后生物标志物。然而,由于像素级注释不可用,有丝分裂核的不同形态构型,它们稀疏的表示以及与非有丝分裂核的相似之处,因此自动化有丝分裂核检测出现了几个挑战。这些挑战破坏了自动检测模型的精度,因此在单个阶段中很难检测。这项工作提出了一个用于乳腺癌组织病理学图像中有丝分裂核鉴定的端到端检测系统。基于深度对象检测的掩模R-CNN适用于有丝分裂核检测,该检测最初选择候选有丝分裂区域的最大回忆。但是,在第二阶段,这些候选区域通过多对象损失函数进行了完善,以提高精度。与TUPAC16数据集中的两阶段检测模型(F-SCORE(0.701)相比,提出的检测模型的性能显示出明显精度(0.86)的有丝分裂核的歧视能力(F-评分为0.86)。有希望的结果表明,基于深度对象检测的模型有可能从弱注释的数据中学习有丝分裂核的特征,并表明它可以适应组织病理学图像中其他核体的鉴定。

Empirical evaluation of breast tissue biopsies for mitotic nuclei detection is considered an important prognostic biomarker in tumor grading and cancer progression. However, automated mitotic nuclei detection poses several challenges because of the unavailability of pixel-level annotations, different morphological configurations of mitotic nuclei, their sparse representation, and close resemblance with non-mitotic nuclei. These challenges undermine the precision of the automated detection model and thus make detection difficult in a single phase. This work proposes an end-to-end detection system for mitotic nuclei identification in breast cancer histopathological images. Deep object detection-based Mask R-CNN is adapted for mitotic nuclei detection that initially selects the candidate mitotic region with maximum recall. However, in the second phase, these candidate regions are refined by multi-object loss function to improve the precision. The performance of the proposed detection model shows improved discrimination ability (F-score of 0.86) for mitotic nuclei with significant precision (0.86) as compared to the two-stage detection models (F-score of 0.701) on TUPAC16 dataset. Promising results suggest that the deep object detection-based model has the potential to learn the characteristic features of mitotic nuclei from weakly annotated data and suggests that it can be adapted for the identification of other nuclear bodies in histopathological images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源