论文标题

在最大的特征值上,有部分方向

On the largest eigenvalue of a mixed graph with partial orientation

论文作者

Yuan, Bo-Jun, Wang, Yi, Fan, Yi-Zheng

论文摘要

令$ g $为连接的图形,让$ t $为$ g $的生成树。 $ g $的部分定向$σ$尊重$ t $是$ g $的边缘的方向,除了$ t $的边缘,与$ g_t^σ$相关的结果图。在本文中,我们证明存在$ g $的部分取向$σ$ a $ t $,因此,$ g_t^σ$的Hermitian邻接矩阵中最大的特征值最多是匹配$ g $的匹配多项式的根源的最大绝对值。

Let $G$ be a connected graph and let $T$ be a spanning tree of $G$. A partial orientation $σ$ of $G$ respect to $T$ is an orientation of the edges of $G$ except those edges of $T$, the resulting graph associated with which is denoted by $G_T^σ$. In this paper we prove that there exists a partial orientation $σ$ of $G$ respect to $T$ such that the largest eigenvalue of the Hermitian adjacency matrix of $G_T^σ$ is at most the largest absolute value of the roots of the matching polynomial of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源