论文标题
Radiogan:深度卷积有条件的生成对抗网络,以生成PET图像
RADIOGAN: Deep Convolutional Conditional Generative adversarial Network To Generate PET Images
论文作者
论文摘要
医学成像中最挑战之一是缺乏数据。事实证明,经典数据增强方法是有用的,但由于图像的差异很大,但仍然有限。使用生成对抗网络(GAN)是解决此问题的一种有前途的方法,但是,训练一种模型以生成不同类别的病变是一项挑战。在本文中,我们提出了一个深度卷积的条件生成对抗网络,以产生MIP正电子发射断层扫描图像(PET),这是一个2D图像,它代表了根据不同的病变或非病变(正常)的3D体积,用于快速解释。我们提出的方法的优点由一个模型组成,该模型能够生成针对每类病变的样本量较小的不同类别的病变,并显示出非常有希望的结果。此外,我们表明,穿过潜在空间可以用作评估生成的图像的工具。
One of the most challenges in medical imaging is the lack of data. It is proven that classical data augmentation methods are useful but still limited due to the huge variation in images. Using generative adversarial networks (GAN) is a promising way to address this problem, however, it is challenging to train one model to generate different classes of lesions. In this paper, we propose a deep convolutional conditional generative adversarial network to generate MIP positron emission tomography image (PET) which is a 2D image that represents a 3D volume for fast interpretation, according to different lesions or non lesion (normal). The advantage of our proposed method consists of one model that is capable of generating different classes of lesions trained on a small sample size for each class of lesion, and showing a very promising results. In addition, we show that a walk through a latent space can be used as a tool to evaluate the images generated.