论文标题
在固定的沿子培养基中类似对称稳定过程的均质化
Homogenization of symmetric stable-like processes in stationary ergodic medium
论文作者
论文摘要
本文研究了在单参数固定的ergodic环境中,具有$α$稳定的跳跃内核的对称非本地差异形式的均质化。在适当的条件下,我们建立同质化结果并明确确定有效的迪里奇形式。 Dirichlet形式的跳跃内核和对称度量的系数被允许退化和无限。并且有效的差异形式中的系数可以退化。
This paper studies homogenization of symmetric non-local Dirichlet forms with $α$-stable-like jumping kernels in one-parameter stationary ergodic environment. Under suitable conditions, we establish homogenization results and identify the limiting effective Dirichlet forms explicitly. The coefficients of the jumping kernels of Dirichlet forms and symmetrizing measures are allowed to be degenerate and unbounded; and the coefficients in the effective Dirichlet forms can be degenerate.