论文标题

使用可搜索的扩展单元的终身学习

Lifelong Learning with Searchable Extension Units

论文作者

Wang, Wenjin, Hu, Yunqing, Zhang, Yin

论文摘要

终身学习仍然是一个开放的问题。它的主要困难之一是灾难性遗忘。已经提出了许多动态扩展方法来解决此问题,但是它们都为所有任务使用预定义结构的均匀模型。常见的原始模型和扩展结构忽略了不同任务上不同模型结构的需求,这导致了多个任务的较少紧凑模型,并导致模型大小随着任务数量的增加而迅速增加。此外,它们不能在所有任务上表现最好。为了解决这些问题,在本文中,我们提出了一个新的终身学习框架,将神经建筑搜索引入终身学习中,称为“可搜索扩展单元”(SEU),这破坏了对预定义的原始模型的需求,并搜索了针对不同任务的特定扩展单元,而不会损害不同任务的模型。我们的方法可以在没有灾难性遗忘的情况下获得更紧凑的模型。对PMNIST,Split CIFAR10数据集,Split CIFAR100数据集和混合数据集的实验结果在经验上证明,我们的方法可以使用较小的模型实现更高的精度,其大小约为最新方法的大约25-33个百分比。

Lifelong learning remains an open problem. One of its main difficulties is catastrophic forgetting. Many dynamic expansion approaches have been proposed to address this problem, but they all use homogeneous models of predefined structure for all tasks. The common original model and expansion structures ignore the requirement of different model structures on different tasks, which leads to a less compact model for multiple tasks and causes the model size to increase rapidly as the number of tasks increases. Moreover, they can not perform best on all tasks. To solve those problems, in this paper, we propose a new lifelong learning framework named Searchable Extension Units (SEU) by introducing Neural Architecture Search into lifelong learning, which breaks down the need for a predefined original model and searches for specific extension units for different tasks, without compromising the performance of the model on different tasks. Our approach can obtain a much more compact model without catastrophic forgetting. The experimental results on the PMNIST, the split CIFAR10 dataset, the split CIFAR100 dataset, and the Mixture dataset empirically prove that our method can achieve higher accuracy with much smaller model, whose size is about 25-33 percentage of that of the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源